首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的客服中心话务量预测模型
引用本文:张一农,刘伯龙,王文婷. 基于神经网络的客服中心话务量预测模型[J]. 吉林大学学报(信息科学版), 2011, 29(2): 97-101
作者姓名:张一农  刘伯龙  王文婷
作者单位:1.吉林大学 通信工程学院,长春 130012;2.南京邮电大学 通信与信息工程学院,南京 210046
摘    要:针对现有预测模型在话务量发展趋势变化、新技术新业务引入后模型失效、预测精度下降等问题,提出一种基于神经网络和事件样本库的智能预测方法.该方法具有自学习功能,可根据预测误差自动调整预测参数并更新事件样本,对话务量趋势变化、事件影响程度变化及新事件的发生具有持续自适应能力.仿真结果表明,该预测方法能有效降低预测误差,与现有...

关 键 词:话务量  神经网络  预测模型

Neural Network Based Traffic Prediction Model of Customer Service Center
ZHANG Yi-nong,LIU Bo-long,WANG Wen-ting. Neural Network Based Traffic Prediction Model of Customer Service Center[J]. Journal of Jilin University:Information Sci Ed, 2011, 29(2): 97-101
Authors:ZHANG Yi-nong  LIU Bo-long  WANG Wen-ting
Affiliation:1. College of Communication Engineering, Jilin University,Changchun 130012,China;2.College of Telecommunications & Information Engineering, Nanjing University Posts and Telecommunications,Nanjing 210046,China
Abstract:An intelligent prediction model based on neural network and event sample database is proposed to solve the changes of traffic trends and the model failure after the introduction of new technologies and new business and decrease of prediction accuracy.The method has self-learning function and continuing adaptive capacity on changes of traffic trends,events influence and the occurrence of new events,which can automatically adjust predictive parameters and update the event samples according to predictive error...
Keywords:traffic  neural network  prediction model  
本文献已被 CNKI 等数据库收录!
点击此处可从《吉林大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号