首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的转炉冶炼终点磷和硫含量预报模型
引用本文:冯聚和,郑玉平,李秀娟,朱新华,毕娜. 基于神经网络的转炉冶炼终点磷和硫含量预报模型[J]. 河北理工大学学报(自然科学版), 2008, 30(3): 26-29,40
作者姓名:冯聚和  郑玉平  李秀娟  朱新华  毕娜
作者单位:河北理工大学,冶金与能源学院,河北唐山,063009
摘    要:通过研究转炉冶炼终点磷、硫含量的影响因素,确定了影响冶炼终点的控制变量,根据人工神经网络技术,对常用BP算法进行改进,建立了基于神经网络的转炉冶炼终点双节点输出模型,实现了对终点钢水磷、硫含量同时进行预报,选取现场实际生产数据为样本,对模型进行训练,使模型对磷、硫含量的预报误差在±0.003%的命中率均达到了85%以上,预报精度达到了炼钢工艺的要求。

关 键 词:转炉冶炼  神经网络  终点成分  预报模型

Predication Model of End-point for Converter Smelting Based on Neural Network
FENG Ju-he,ZHENG Yu-ping,LI Xiu-uan,ZHU Xin-hua,BI Na. Predication Model of End-point for Converter Smelting Based on Neural Network[J]. Journal of Hebei Institute of Technology(Natural Science Edition), 2008, 30(3): 26-29,40
Authors:FENG Ju-he  ZHENG Yu-ping  LI Xiu-uan  ZHU Xin-hua  BI Na
Abstract:
Keywords:
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号