首页 | 本学科首页   官方微博 | 高级检索  
     

一类无处可微连续函数的构造及其几何性质
引用本文:吕冬梅,王宏勇. 一类无处可微连续函数的构造及其几何性质[J]. 淮北煤炭师范学院学报(自然科学版), 2000, 0(1)
作者姓名:吕冬梅  王宏勇
作者单位:淮北煤师院附中!安徽淮北235000(吕冬梅),淮北煤师院数学系!安徽淮北235000(王宏勇)
摘    要:借助于实数的Cantor级数表达式.在单位区间上构造了一类用二进小数表示的函数.证明了这类函数是处处连续但处处不可微的.并且在一定的条件下.讨论了这类函数的几何对称性.

关 键 词:Cantor级数  无处可微连续函数  对称性

Construction and Geometrical Properties of a Class of Nowhere Differentiable Continuous Functions
L Dong-mei, WANG Hong-yong. Construction and Geometrical Properties of a Class of Nowhere Differentiable Continuous Functions[J]. Journal of Huaibei Coal Industry Teachers College(Natural Science edition), 2000, 0(1)
Authors:L Dong-mei   WANG Hong-yong
Abstract:In this paper, a class of nowhere differentiable continuous functions on the unit interval are constructed by means of the Cantor series expressions of real numbers. Moreover, under a certain condition, the geometrical properties of these functions are also discussed.
Keywords:Cantor series  nondifferentiable continuous functions  symmetry
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号