首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP人工神经网络的非饱和黄土湿陷系数计算方法
引用本文:高凌霞,罗跃纲,杨向军. 基于BP人工神经网络的非饱和黄土湿陷系数计算方法[J]. 大连民族学院学报, 2006, 8(5): 24-26,35
作者姓名:高凌霞  罗跃纲  杨向军
作者单位:大连民族学院,土木建筑工程学院,辽宁,大连,116605;大连市政工程勘测设计院,辽宁,大连,116011
摘    要:在综合分析非饱和黄土湿陷系数影响因素的基础上,采用BP人工神经网络方法建立了湿陷系数的计算模型.用西安地区黄土的实测资料作为网络模型的学习训练样本和测试样本,对网络模型的计算结果与实测进行了对比.结果表明,用人工神经网络方法计算非饱和黄土湿陷系数,结果准确、可靠,更接近于实际,为湿陷系数的理论计算提供一种新方法.

关 键 词:黄土  非饱和  湿陷系数  神经网络  计算方法
文章编号:1009-315X(2006)05-0024-03
收稿时间:2006-04-22
修稿时间:2006-04-22

Study on Artificial Neural Network Method for Calculation the Coefficient of Loess Collapsibility
GAO Ling-xia,LUO Yue-gang,YANG Xiang-jun. Study on Artificial Neural Network Method for Calculation the Coefficient of Loess Collapsibility[J]. Journal of Dalian Nationalities University, 2006, 8(5): 24-26,35
Authors:GAO Ling-xia  LUO Yue-gang  YANG Xiang-jun
Affiliation:1. School of Architecture and Civil Engineering, Dalian Nationalities University, Dalian Liaoning 116605, China; 2. School of Civil Engineering and Hydronics, Dalian University of Technology, Dalian Liaoning 116024, China
Abstract:Based on the analysis of the main factors influencing coefficient of loess collapsibility,model to calculate coefficient of collapsibility was established by applying the theory of artificial neural network(ANN).A large amount of test data from Xi'an was used as learning and training samples to train and test the artificial neural network model.The calculated results of the ANN model and the test values were compared and analyzed.The results show that it is comparatively precise to calculate the subsidence coefficient of ground surface by ANN technology.
Keywords:loess  coefficient of collapsibility  artificial neural networks
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号