摘 要: | 随着自然科学和社会生产的不断发展,人们对数的认识逐步深入。到十六世纪,数的仓库已扩张到复数。作为数集,它把过去的自然数、整数、有理数、实数作为子集,全部包括进去。复数除了不能进行大小比较之外,包括了过去的所有数集的运算及性质,并且具有许多过去的数集没有的性质,成为一种更加完善、更能反映自然规律的数。那么,有没有包括复数、比复数更加完善、更能反映自然规律的数存在呢?我们把对复数系进行各种扩张而得到的数叫做超复数。本文通过类似从实数域 R 扩张复数域 C 的方法,以及对 i平方的定义进行扩张的方法,论述四元数、八元数、二重数、对偶数和其它超复数,并且对它们的若干性质进行探讨。
|