Abstract: | DNA mutations and aberrations are a problem for all forms of life. Eukaryotes specifically have developed ways of identifying and repairing various DNA mutations in a complex and refractory chromatin environment. The chromatin structure is much more than a packaging unit for DNA; it is dynamic. Cells utilize and manipulate chromatin for gene regulation, genome organization and maintenance of genome integrity. Once a DNA aberration has occurred, the various DNA repair machineries interact with chromatin proteins, such as the histone variant H2A.X, and chromatin remodeling machines of the SWI/SNF family to gain access and repair the lesion in a timely manner. Recent studies have thus begun to address the roles of chromatin proteins in DNA repair as well as to dissect the functions of DNA repair machinery in vitro on more physiological, nucleosomal templates. |