首页 | 本学科首页   官方微博 | 高级检索  
     

基于L1范数的总变分正则化超分辨率图像重建
引用本文:占美全,邓志良. 基于L1范数的总变分正则化超分辨率图像重建[J]. 科学技术与工程, 2010, 10(28)
作者姓名:占美全  邓志良
作者单位:1. 江苏科技大学计算机科学与工程学院,镇江,212003
2. 常州信息职业技术学院,常州,213164
摘    要:设计了一种基于L1范数的总变分正则化超分辨率图像序列重建算法.采用L1范数对重建图像保真度进行约束,利用总变分正则化克服重建问题的病态性,有效地保持了图像的边缘并且提高了运算速度;运用设计的算法对模拟的低分辨率图像序列进行重建,分别从主观效果和客观衡量指标两方面与基于L2范数的总变分正则化的超分辨率重建结果进行比较,实验结果表明该算法在保持图像边缘的同时,提高了超分辨率重建算法的运算速度.

关 键 词:总变分  正则化  超分辨率  L1范数  L2范数
收稿时间:2010-07-13
修稿时间:2010-07-14

L1 Norm of Total Variation Regularization Based Super Resolution Reconstruction for Images
zhanmeiquan and dengzhiliang. L1 Norm of Total Variation Regularization Based Super Resolution Reconstruction for Images[J]. Science Technology and Engineering, 2010, 10(28)
Authors:zhanmeiquan and dengzhiliang
Affiliation:Changzhou College Of Information Technology
Abstract:An L1 norm of total variation regularization based super resolution reconstruction algorithm for images was proposed. The L1 norm was used to constrain the fidelity of the reconstructed image, and the total variation regularization was implemented to overcome the ill-posed of the problem. The edge of the image was preserved effectively and the speed of the algorithm was improved. Simulated taken low resolution image sequences for the designed algorithm were used in the experiments, and compared the proposed algorithm with the algorithm that based on L2 norm of total variation regularization for super resolution reconstruction in the way of subjective vision effect and objective quality, respectively. the results show that the proposed algorithm not only preserves the edge of image, but also improves the computing speed of the algorithm for super resolution reconstruction for image sequences.
Keywords:total variation   regularization   super resolution   L1 norm   L2 norm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号