首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的快速植物图像识别
摘    要:植物分类在形态、颜色和纹理上具有高度的相似性和密集的细节信息,传统的机器学习方法无法满足这些大样本的特征提取训练,识别种类与精度受到限制。深度学习可以有效地解决植物图像识别在种类数量、准确度和速度上的难点。本文提出了基于优化的P-AlexNet模型的植物识别算法,基于卷积神经网络(CNN)中的AlexNet网络模型进行优化处理,提高模型的泛化能力、细节特征的表征能力以及识别精度。利用迁移学习热启动更新植物识别种类,利用GPU并行计算加速模型训练和图片识别速度。针对206类植物图片,训练得到验证集精度达到86.7%的模型。以此模型为基础,开发了一款智能植物图像识别平台,包含了Web网站以及Android和IOS的App应用。Web端实验测试结果表明,检测时间平均为1.282s,具有较高的准确性和泛化性以及快速的识别速度。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号