首页 | 本学科首页   官方微博 | 高级检索  
     

基于灰色模型与LSTM网络的旋转机械轴承寿命预测
引用本文:舒涛,张一弛,丁日显. 基于灰色模型与LSTM网络的旋转机械轴承寿命预测[J]. 系统工程与电子技术, 2021, 43(8): 2355-2361. DOI: 10.12305/j.issn.1001-506X.2021.08.39
作者姓名:舒涛  张一弛  丁日显
作者单位:1. 空军工程大学防空反导学院, 陕西 西安 7100512. 空军工程大学研究生院, 陕西 西安 710051
基金项目:国家自然科学基金青年基金(51605488)
摘    要:大型机械设备中旋转机械占到总量的80%,为及时掌握其工作状态,开展如何旋转机械轴承的寿命预测精度的仿真研究.首先,通过可靠性数值(confidential value,CV)量化评估工作状态;然后,利用数据变换和累加积分的方法优化数据平滑性与背景值来改进灰色模型;并与长短时记忆网络结合为新预测模型来预测系统工作状态;最...

关 键 词:旋转机械  轴承  寿命预测  预测精度  灰色模型  长短时记忆网络
收稿时间:2020-12-02

Life prediction of bearings in rotating machinery based on grey model and LSTM network
Tao SHU,Yichi ZHANG,Rixian DING. Life prediction of bearings in rotating machinery based on grey model and LSTM network[J]. System Engineering and Electronics, 2021, 43(8): 2355-2361. DOI: 10.12305/j.issn.1001-506X.2021.08.39
Authors:Tao SHU  Yichi ZHANG  Rixian DING
Affiliation:1. Air Defense and Missile Defense College, Air Force Engineering University, Xi'an 710051, China2. Graduate School of Air Force Engineering University, Xi'an 710051, China
Abstract:Rotating machinery account for 80 percent of the total large mechanical equipment. In order to grasp the working condition in time, the simulation research about how to improve the accuracy of life prediction for the bearings in rotating machineries is carried out. Firstly, the confidential value (CV) is used to quantify the evaluation of the working status. Then, the method of data transformation and cumulative integration is used to optimize the smoothness of the data and the background value to improve the grey model. And the long-short term memory network (LSTM) is combined with a new prediction model to predict the working state of bearings. Finally, the average absolute percentage error and other two performance indicators are compared with the single models, and the predicted failure time is compared with fully convolutional layer neural network algorithm and unscented particle filter algorithm. The results show that the average value of the three indicators for predicting the degradation trend of the combined model is better than that of the three single models. The failure time predicted by the combined model is more accurate than the two improved algorithms.
Keywords:rotating machinery  bearing  life prediction  prediction accuracy  grey model  long-short term memory (LSTM) network  
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号