首页 | 本学科首页   官方微博 | 高级检索  
     

基于多路融合卷积神经网络的网购商品情感分类
作者姓名:郝利栋  赵慧  杨培丽
作者单位:华东师范大学计算机科学与软件工程学院
摘    要:通过提出一种多路融合卷积神经网络(multi-mixed convolutional neural network,MMCNN)对网购商品评论数据进行文本情感分类。采用skip-gram模型进行词向量的训练,并用训练好的向量表示评论数据。针对评论数据长短不一的情况,提出了循环词向量填充和随机词向量填充算法,有助于提升模型分类的准确率。针对传统卷积神经网络特征提取方式单一的问题,将多路卷积特征和池化特征在全连接层进行了特征融合,以此提升网络的文本分类效果。选择京东网站上45 000条婴儿奶粉的评论数据进行试验,并与支持向量机、最大熵模型、朴素贝叶斯等传统机器学习方法以及经典卷积神经网络方法进行对比。试验结果表明,提出的多路融合卷积神经网络具有较高的分类正确率。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号