摘 要: | 通过提出一种多路融合卷积神经网络(multi-mixed convolutional neural network,MMCNN)对网购商品评论数据进行文本情感分类。采用skip-gram模型进行词向量的训练,并用训练好的向量表示评论数据。针对评论数据长短不一的情况,提出了循环词向量填充和随机词向量填充算法,有助于提升模型分类的准确率。针对传统卷积神经网络特征提取方式单一的问题,将多路卷积特征和池化特征在全连接层进行了特征融合,以此提升网络的文本分类效果。选择京东网站上45 000条婴儿奶粉的评论数据进行试验,并与支持向量机、最大熵模型、朴素贝叶斯等传统机器学习方法以及经典卷积神经网络方法进行对比。试验结果表明,提出的多路融合卷积神经网络具有较高的分类正确率。
|