首页 | 本学科首页   官方微博 | 高级检索  
     

混沌粒子群优化模糊聚类的旋转机械故障诊断
引用本文:胡方霞,谢志江,岳茂雄. 混沌粒子群优化模糊聚类的旋转机械故障诊断[J]. 重庆大学学报(自然科学版), 2011, 34(6): 26-30
作者姓名:胡方霞  谢志江  岳茂雄
作者单位:重庆大学机械传动国家重点实验室;重庆工商职业学院计算机与电子工程系;中国空气动力研究与发展中心;
基金项目:国家自然科学基金资助项目(10976034)
摘    要:提出基于混沌粒子群优化加权模糊聚类的旋转机械故障诊断算法。该算法用混沌粒子群算法取代传统的梯度下降法,优化加权模糊C-均值算法的各个参数,并依据聚类有效性指标确定最优聚类数及聚类中心。应用表明,混沌粒子群算法有效提高了模糊聚类分析的收敛速度和精度,提高了旋转机械故障诊断的准确率。

关 键 词:旋转机械  故障诊断  混沌  粒子群优化  模糊C-均值  
收稿时间:2011-01-20

Fault diagnosis of rotating machinery based on fuzzy clusteringoptimized by chaos embedded particle swarm optimization
HU Fang xi,XIE Zhi jiang and YUE Mao xiong. Fault diagnosis of rotating machinery based on fuzzy clusteringoptimized by chaos embedded particle swarm optimization[J]. Journal of Chongqing University(Natural Science Edition), 2011, 34(6): 26-30
Authors:HU Fang xi  XIE Zhi jiang  YUE Mao xiong
Affiliation:HU Fang-xia1,2,XIE Zhi-jiang1,YUE Mao-xiong3(1.State Key Laboratory of Mechanical Transmissions,Chongqing University,Chongqing 400044,P.R.China,2.Computer and Electronic Engineering Department,ChongQing Technology and Business Institute,Chongqing 400052,3.China Aerodynamics Research & Development Center,Sichuan 617000,P.R.China)
Abstract:A method of weighted fuzzy clustering optimized by chaos embedded particle swarm algorithm(CPSO) is put forward and applied in vibration fault diagnosis of rotating machinery.In the method,CPSO is used to displace the traditional stochastic-gradient algorithm to optimize parameters of weighted fuzzy C-means(WFCM).The best clustering num and clustering centers are automatically attained according to clustering validity function.The experimental results show that the method effectively increases the convergen...
Keywords:rotating machinery  fault diagnosis  chaos  particle swarm optimization  fuzzy C-means  
本文献已被 CNKI 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号