首页 | 本学科首页   官方微博 | 高级检索  
     

扁球壳微分方程的分析解
引用本文:窦家维. 扁球壳微分方程的分析解[J]. 陕西师范大学学报(自然科学版), 1995, 0(1)
作者姓名:窦家维
作者单位:西安联合大学师范学院数学系
摘    要:扁球壳微分方程的分析解窦家维(西安联合大学师范学院数学系西安710061;作者,女,32岁,讲师)1扁球壳的微分方程在非轴对称变形时,扁球壳的应力函数中和径向位移W所满足的基本微分方程为,、。__。J]11)____.__.._。___式中算子而是与...


Analytic solution of equation on oblate spheroid shell
Don Jiawei. Analytic solution of equation on oblate spheroid shell[J]. Journal of Shaanxi Normal University: Nat Sci Ed, 1995, 0(1)
Authors:Don Jiawei
Abstract:With a partial differential equation,the stress and displacement function on oblate spheriod shell is discussed.The study of the partial differential equation is reduced to the study of a Bossel equation. The general solution of the Bessel equation can be obtained.Thus the stress at any point on the oblate spheroid shell can be calculated. As an application, it can be used as a theoretical basis in engineering design.
Keywords:oblate spheroid shell  differential equation  bessel function
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号