首页 | 本学科首页   官方微博 | 高级检索  
     

正则牛顿过程设计n分之一阶分抗电路
引用本文:廖科,袁晓,蒲亦非,周激流. 正则牛顿过程设计n分之一阶分抗电路[J]. 四川大学学报(自然科学版), 2006, 43(1): 104-108
作者姓名:廖科  袁晓  蒲亦非  周激流
作者单位:四川大学电子信息学院,成都,610064;四川大学电子信息学院,成都,610064;四川大学计算机学院,成都,610064
摘    要:讨论基于一阶正则牛顿迭代求根过程进行任意阶分抗的近似求解方法.通过迭代求解n阶方程的正实根,作为分抗的模拟.给出迭代的精确公式,并分析其收敛必须满足的条件,最后给出相应的模拟无源电路实现方案.

关 键 词:分数运算  分抗  正则牛顿法  收敛条件
文章编号:0490-6756(2006)01-0104-05
收稿时间:2005-03-20
修稿时间:2005-03-20

One-nth Order Fractance Implementation Using Regular Newton Process
LIAO Ke,YUAN Xiao,PU Yi-fei,ZHOU Ji-liu. One-nth Order Fractance Implementation Using Regular Newton Process[J]. Journal of Sichuan University (Natural Science Edition), 2006, 43(1): 104-108
Authors:LIAO Ke  YUAN Xiao  PU Yi-fei  ZHOU Ji-liu
Affiliation:School of Electronic and Information; Sichuan University;School of Electronic and Information; Sichuan University;School of Electronic and Information; Sichuan University;School of Electronic and Information; Sichuan University,School of Computer Science
Abstract:Discusses a method to realize the arbitrary order fractance in fractional calculus based on one-order regular Newton process.Using the positive real root of the n-order equation as the approximation of the fractance by way of solving the equation.The condition under which the Newton process can be convergent is discussed.Authors also present the iteration formula and in the end the analog passive realization of the one nth order fractance is presented.
Keywords:fractional calculus   fractance   Newton process   convergent condition
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号