首页 | 本学科首页   官方微博 | 高级检索  
     

二进前向网络的结构优化设计
引用本文:张军英,保铮. 二进前向网络的结构优化设计[J]. 系统工程与电子技术, 1998, 0(3)
作者姓名:张军英  保铮
作者单位:西安电子科技大学电子工程研究所
基金项目:国家自然科学基金,电科院军事电子预研项目
摘    要:
n维超立方体顶点的分类问题是人工神经网络研究中的重要问题之一。若对n维超立方体的顶点进行正确分类,同时保证网络具有最好的稳健能力,则任两个不同类顶点连线的中点都应是分割这两顶点的超平面上的点。基于这样的思想,本文导出了使网络稳健能力最强的分类超平面的标准方程,给出了网络各层节点之间连接权值和阈值的可能值。其连接权值仅需取+1、-1和0,阈值仅需取12加上〔-n,n-1〕上的整数,从而可获得最优的网络结构、最少的隐节点数目、最大的稳健能力,这样结构的网络易于训练,并不易进入局部极小点。

关 键 词:网络,连接,阈,分类,n维超立方体

The Optimal Structure Design for Feedforward Neural Networks
Zhang Junying and Bao Zheng Electronic Engineering Research Institute,Xidian University. The Optimal Structure Design for Feedforward Neural Networks[J]. System Engineering and Electronics, 1998, 0(3)
Authors:Zhang Junying  Bao Zheng Electronic Engineering Research Institute  Xidian University
Affiliation:Zhang Junying and Bao Zheng Electronic Engineering Research Institute,Xidian University,710071
Abstract:
In order to realize a correct classification of vertices on n dimensional hypercube with a binary neural network with maximal robustness,the median point on the line of any two adjacent vertices falling into different classes must be in the hyperplane classifying the two vertices.Based on this,the standard equation of the hyperplane is induced,and the possible values of connection weights and biases of the neurons in the network are given,which result in the optimal structure,the least number of hidden nodes and the maximal robustness,and make the network much easier to train and difficult to fall into local minimum.
Keywords:n dimensional hypercube  Binary feedforward neural network  Connection weight  Bias  Robust Classification.
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号