首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持说话人权重的快速说话人自适应算法
引用本文:蔡铁,朱杰. 基于支持说话人权重的快速说话人自适应算法[J]. 上海交通大学学报, 2005, 39(12): 1997-2001
作者姓名:蔡铁  朱杰
作者单位:上海交通大学,电子工程系,上海,200030;上海交通大学,电子工程系,上海,200030
基金项目:上海市科学技术委员会基础研究基金项目(01JC14033)
摘    要:针对语音识别系统中快速说话人自适应问题,提出了一种支持说话人权重算法.该算法通过支持说话人的计算实现了说话人选择与自适应参数的降维,减少了自适应时的存储量,有效提高了自适应数据较少时的性能.有监督自适应的实验结果表明,在仅有一句自适应语句的情况下系统误识率相对非特定人(SI)系统下降了5.82%,明显优于其他快速自适应算法.

关 键 词:语音识别  说话人自适应  支持向量机  支持说话人权重
文章编号:1006-2467(2005)12-1997-05
收稿时间:2004-12-18
修稿时间:2004-12-18

A Rapid Speaker Adaptation Based on Support Speaker Weighting
CAI Tie,ZHU Jie. A Rapid Speaker Adaptation Based on Support Speaker Weighting[J]. Journal of Shanghai Jiaotong University, 2005, 39(12): 1997-2001
Authors:CAI Tie  ZHU Jie
Affiliation:Dept. of Electronic Eng. , Shanghai Jiaotong Univ. , Shanghai 200030, China
Abstract:A novel model-based speaker adaptation algorithm,support speaker weighting(SSW),was proposed for rapid speaker adaptation in speech recognition systems.It realizes the specific speaker selection and dimensionality reduction by computing the support speaker subsets from many reference speakers.This method yields major improvements in performance for tiny amounts of adaptation data while greatly reducing the memory requirement.The experiments on the supervised adaptation demonstrate that the relative error rate reduction of 5.82% is achieved when only one adaptation sentence is available.In comparison with other rapid speaker adaptation algorithms,SSW is more effective.
Keywords:speech recognition    speaker adaptation    support vector machine    support speaker weighting
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号