首页 | 本学科首页   官方微博 | 高级检索  
     

基于Perona-Malik模型改进的图像去噪方法
引用本文:基于Perona-Malik模型改进的图像去噪方法. 基于Perona-Malik模型改进的图像去噪方法[J]. 山东科学, 2010, 33(4): 124-130. DOI: 10.3976/j.issn.1002-4026.2020.04.016
作者姓名:基于Perona-Malik模型改进的图像去噪方法
作者单位:新疆师范大学数学科学学院,新疆 乌鲁木齐 830017
基金项目:新疆维吾尔自治区自然科学基金面上科学基金(2018D01A27);国家自然科学基金(11861068);新疆师范大学“十三五”校级重点学科(20SDKD110)
摘    要:结合冲击滤波器和Perona-Malik(P-M)模型提出一种新的图像去噪模型,在增强图像细节的同时,能够抑制噪声的放大和过冲现象,同时给出的扩散函数可以使模型达到更好的图像去噪效果。仿真结果表明,使用本文模型进行去噪处理后得到的图像在视觉效果和客观评价标准方面均优于P-M模型、CLMC模型以及传统的模型,在去除噪声的同时,能够更好地保留图像的细节和边缘特征。

关 键 词:图像去噪  Perona-Malik模型  冲击滤波器  图像边缘增强  扩散函数  
收稿时间:2020-01-06

Improved image denoising method based on Perona-Malik model
YIN Su-ya,TANG Quan,ZHANG Xin. Improved image denoising method based on Perona-Malik model[J]. Shandong Science, 2010, 33(4): 124-130. DOI: 10.3976/j.issn.1002-4026.2020.04.016
Authors:YIN Su-ya  TANG Quan  ZHANG Xin
Affiliation:School of Mathematical Sciences, Xinjiang Normal University, Urumqi 830017,China
Abstract:A new image denoising model based on impulse filter and Perona-Malik(P-M) model is proposed in this study. The denoising model proposed herein can not only enhance the image details but also restrain the noise amplification and overshoot. Simultaneously, the diffusion function obtained in this study can help the model achieve better image denoising effect. Through a large number of simulation experiments, results show that the image obtained by denoising with the proposed model is superior to those obtained by the P-M model, CLMC model and traditional model in terms of both visual effect and objective evaluation. The proposed model can better preserve the details and edge features of the image while removing the noise.
Keywords:image denoising  Perona-Malik model  impulse filter  image edge enhancement  diffusion function  
点击此处可从《山东科学》浏览原始摘要信息
点击此处可从《山东科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号