首页 | 本学科首页   官方微博 | 高级检索  
     

融合句义特征的多文档自动摘要算法研究
引用本文:罗森林,白建敏,潘丽敏,韩磊,孟强. 融合句义特征的多文档自动摘要算法研究[J]. 北京理工大学学报, 2016, 36(10): 1059-1064. DOI: 10.15918/j.tbit1001-0645.2016.10.014
作者姓名:罗森林  白建敏  潘丽敏  韩磊  孟强
作者单位:北京理工大学信息与电子学院,北京,100081;北京理工大学信息与电子学院,北京,100081;北京理工大学信息与电子学院,北京,100081;北京理工大学信息与电子学院,北京,100081;北京理工大学信息与电子学院,北京,100081
基金项目:国家“二四二”资助项目(2005C48);北京理工大学科技创新计划重大项目培育专项资助项目(2011CX01015)
摘    要:多文档自动摘要研究是自然语言处理领域的关键问题之一,为使抽取的摘要更能体现多文档主题,本文在子主题划分的基础上,提出了一种融合句义特征的句子优化选择方法.该方法基于句义结构模型,提取句义结构中的话题、谓词等特征,并融合统计特征构造特征向量计算句子权重,最后采用综合加权选取法和最大边缘相关相结合的方法抽取摘要.选取不同主题的文本集进行实验和评价,在摘要压缩比为15%情况下,系统摘要平均准确率达到66.7%,平均召回率达到65.5%.实验结果表明句义特征的引入可以有效提升多文档摘要的效果. 

关 键 词:多文档自动摘要  句义结构模型  句义特征  自然语言处理
收稿时间:2013-04-11

Research on Multi-Document Summarization Merging the Sentential Semantic Features
LUO Shen-lin,BAI Jian-min,PAN Li-min,HAN Lei and MENG Qiang. Research on Multi-Document Summarization Merging the Sentential Semantic Features[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2016, 36(10): 1059-1064. DOI: 10.15918/j.tbit1001-0645.2016.10.014
Authors:LUO Shen-lin  BAI Jian-min  PAN Li-min  HAN Lei  MENG Qiang
Affiliation:School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
Abstract:Multi-document summarization (MDS) is one of the key issues in the field of natural language processing. In order to extract compendious sentences to reflect more accurate theme of the multi-document, a new method was proposed to retrieve terse sentences. At first, some sentential semantic features (SSF), for example topic and predicate, were extracted based on a sentential semantic model (SSM). Then the sentence weight was calculated by building feature vector merging statistical features and SSF. Finally, sentences were extracted according to the feature weighting and maximal marginal relevance (MMR). A set of experiment show that the new method is effective, the average precision rate of summary can reach 66.7%, and the average recall rate can reach 65.5% when the compression ratio of summary is 15%. The results of experiments show that the SSF are effective on upgrading the affection of MDS.
Keywords:multi-document summarization  sentential semantic model  sentential semantic feature  natural language processing
本文献已被 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号