首页 | 本学科首页   官方微博 | 高级检索  
     

一类分数阶微分方程边值问题解的存在性
引用本文:周文学,刘海忠. 一类分数阶微分方程边值问题解的存在性[J]. 山东大学学报(理学版), 2013, 48(8): 45-49
作者姓名:周文学  刘海忠
作者单位:1. 兰州交通大学数学系, 甘肃 兰州 730070; 2. 复旦大学数学科学学院, 上海 200433
基金项目:国家自然科学基金资助项目
摘    要:研究了一类分数阶微分方程边值问题。 应用Green函数,将分数阶微分方程边值问题转化为等价的积分方程, 利用Schaefer不动点定理和Leray Schauder不动点定理得到了该边值问题存在解的充分条件, 推广和完善了已有的结果。

关 键 词:边值问题   分数阶微分方程  Caputo型分数阶导数   不动点定理,
收稿时间:2012-09-04

Existence of solution for the boundary value problem of a class of fractional differential equation
ZHOU Wen-xue , LIU Hai-zhong. Existence of solution for the boundary value problem of a class of fractional differential equation[J]. Journal of Shandong University, 2013, 48(8): 45-49
Authors:ZHOU Wen-xue    LIU Hai-zhong
Affiliation:1. Department of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China;
2. School of Mathematical Sciences, Fudan University, Shanghai 200433, China
Abstract:A class of boundary value problem of fractional differential equation is studied. By the means of the Green′s function, the boundary value problem of fractional differential equation can be reduced to the equivalent integral equation, and some sufficient conditions on the existence of solution for the boundary value problem are obtained by using Schaefer′s fixed point theorem and Leray-Schauder fixed point theorem. Some known results are extended and improved.
Keywords:boundary value problem  fractional differential equation  Caputo fractional derivative  fixed point theorem
本文献已被 万方数据 等数据库收录!
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号