首页 | 本学科首页   官方微博 | 高级检索  
     

基于小生境遗传算法优化串级神经网络的台区理论线损预测
引用本文:霍成军,王玮茹,余昆,陈广湘,李蒙赞,程雪婷,但唐军. 基于小生境遗传算法优化串级神经网络的台区理论线损预测[J]. 科学技术与工程, 2021, 21(23): 9897-9906
作者姓名:霍成军  王玮茹  余昆  陈广湘  李蒙赞  程雪婷  但唐军
作者单位:国网山西省电力公司,太原030025;国网山西省电力公司电力科学研究院,太原030032;河海大学能源与电气学院,南京211100
基金项目:国网山西省电力公司资助项目(52053018000S)
摘    要:台区作为电力系统的最末端部分,节点数目多、网络架构复杂,导致不易精确计算其理论线损问题.在海量实际低压台区运行历史数据的基础上,首先研究影响台区线损的相关因子,建立台区线损特征指标集合.然后利用皮尔逊相关系数分析方法从中提取出高损关键特征指标作为线损预测模型输入.再融合集成学习和梯度提升树思想,建立基于串级BP(bac...

关 键 词:台区线损  关键特征指标  皮尔逊相关系数  串级BP神经网络  小生境遗传算法
收稿时间:2021-03-08
修稿时间:2021-06-04

Theoretical Line Loss Forecast Based on Cascade Neural Network Optimized by Niche Genetic Algorithm
Huo Chengjun,Wang Weiru,Yu Kun,Chen Guangxiang,Li Mengzan,Cheng Xueting,Dan Tangjun. Theoretical Line Loss Forecast Based on Cascade Neural Network Optimized by Niche Genetic Algorithm[J]. Science Technology and Engineering, 2021, 21(23): 9897-9906
Authors:Huo Chengjun  Wang Weiru  Yu Kun  Chen Guangxiang  Li Mengzan  Cheng Xueting  Dan Tangjun
Affiliation:State Grid Shanxi Electric Power Company,,,,,,
Abstract:As the terminal part of power system, low-voltage distribution network has the characteristics with largenumber of nodes, and complex network structure, leading to the difficulty of calculating the theoretical line loss accurately. Based on real operational data, the characteristic index set of the line loss was established based on the analysis on the relevant factors affecting the line loss of low-voltage distribution network firstly. Then, Pearson correlation coefficient analysis method was applied to extract the key characteristics of high loss as the input of line loss forecast model. Combined with the idea of ensemble learning and gradient lifting tree, the line loss forecast model of low-voltage substation area based on cascade BP neural network is proposed here, with initial parameter optimized by niche genetic algorithm to improve the training efficiency of forecast model. Compared with other forecasting algorithms, simulation result based on realistic data shows the proposed forecast model for low-voltage distribution network line loss has excellent training efficiency and forecast generalization ability.
Keywords:Line loss in low-voltage distribution network   Key characteristic index   Pearson correlation efficient  Cascade BP neural network   Niche genetic algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号