首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进神经网络的水泥路面使用性能预测模型
引用本文:周文献,李明利,孙立军. 基于改进神经网络的水泥路面使用性能预测模型[J]. 同济大学学报(自然科学版), 2006, 34(9): 1191-1195
作者姓名:周文献  李明利  孙立军
作者单位:1. 同济大学,道路与交通工程教育部重点实验室,上海,200092;上海市公路管理处,上海,200063
2. 同济大学,污染控制与资源化研究国家重点实验室,上海,200092
3. 同济大学,道路与交通工程教育部重点实验室,上海,200092
摘    要:为了克服传统水泥路面使用性能预测方法的缺陷和误差反向传播(BP)神经网络的不足,利用动量方法改进了BP神经网络收敛性,建立了水泥路面使用性能预测模型.采用广东水泥路面调查数据对模型进行了训练和验证,并对模型训练方法进行了优化.分析表明,该模型具有较好的实用性和预测精度.

关 键 词:水泥混凝土路面  路面使用性能  神经网络  预测模型
文章编号:0253-374X(2006)09-1191-05
收稿时间:2005-06-20
修稿时间:2005-06-20

Portland Cement Concrete Pavement Performance Prediction Model Based on Improved Neural Network
ZHOU Wenxian,LI Mingli,SUN Lijun. Portland Cement Concrete Pavement Performance Prediction Model Based on Improved Neural Network[J]. Journal of Tongji University(Natural Science), 2006, 34(9): 1191-1195
Authors:ZHOU Wenxian  LI Mingli  SUN Lijun
Affiliation:1. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 200092, China; 2. Highway Administration of Shanghai ,Shanghai 200063 ,China; 3. State Key Laboratory of Resource Reuse and Pollution Control, Tongji University, Shanghai 200092, China
Abstract:In order to deal with the deficiency of traditional prediction method of pavement performance and the insufficiency of Back-Propagation(BP) neural network,a prediction model based on the improved neural network with momentum Back-Propagation(MOBP) is developed.The model is validated and trained with pavement performance data of Guangdong province,and the training method is also optimized.According to the theoretical analysis and practical verification,the approach is completely feasible.
Keywords:portland cement concrete pavement  pavement performance  neural network  prediction model
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号