首页 | 本学科首页   官方微博 | 高级检索  
     

基于多权值神经网络的老人跌倒智能识别研究
引用本文:羌予践,华 亮,陈 玲,顾菊平,沈 煜. 基于多权值神经网络的老人跌倒智能识别研究[J]. 科学技术与工程, 2015, 15(4)
作者姓名:羌予践  华 亮  陈 玲  顾菊平  沈 煜
作者单位:南通大学电气工程学院,南通,226019
基金项目:国家自然科学基金(61273024,61305031);江苏省自然科学基金(KB2012227);江苏省高校自然科学基金((12KJB510023);
摘    要:随着我国人口老龄化及对延年益寿的期望加剧,老年人的健康问题受到广泛的关注。针对这一社会问题,建立人体跌倒模型,并对三轴加速度传感器采集来的不同人体跌倒姿态的高维数据做主成分分析(PCA),降维处理使其特征投影到低维空间,再将降维后的特征向量借助多权值神经元网络算法识别人体跌倒姿态。最后,实际采样的人体跌倒姿态数据验证了该方法的有效性。此外,与支撑向量机(SVM)算法相比较,实验结果表明,多权值神经元网络比支撑向量机算法在人体跌倒应用中更加具有优越性。

关 键 词:老人跌倒  多权值神经元网络  主成分分析  智能识别
收稿时间:2014-09-02
修稿时间:2014-09-22

Research on the Intelligent Recognition of Falling of Aged People Based on Multi-weights Neural Network
QIANG Yu-jian , HUA Liang , CHEN Ling , GU Ju-ping , SHEN Yu. Research on the Intelligent Recognition of Falling of Aged People Based on Multi-weights Neural Network[J]. Science Technology and Engineering, 2015, 15(4)
Authors:QIANG Yu-jian    HUA Liang    CHEN Ling    GU Ju-ping    SHEN Yu
Abstract:With our aging population and the increased expectations of longevity, the health problems of the elderly have widely attracted attention. In response to this social problem, the model of falls was created. The principal component analysis (PCA) was used to obtain the principal components of high-dimensional data from different body posture collected by three-axis accelerometer. Dimension-reduced processing makes features project onto low-dimensional space. Further, feature vectors from dimension reduction are utilized to train multi-weights neural network (MWNN) to identify the falling body posture. Finally, actual sampling data of the falling body posture have verified the validity of the method. In addition, simulation results also indicate that MWNN utilized in this paper is more excellent than support vector machine (SVM) in the application of falling of aged people.
Keywords:falling of aged people   multi-weights neural network   principal component analysis    intelligent recognition
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号