首页 | 本学科首页   官方微博 | 高级检索  
     

基于析因试验的连杆衬套磨损分析
引用本文:樊文欣,佘勇,曹存存,杨华龙. 基于析因试验的连杆衬套磨损分析[J]. 科学技术与工程, 2017, 17(11)
作者姓名:樊文欣  佘勇  曹存存  杨华龙
作者单位:中北大学 机械与动力工程学院,中北大学 机械与动力工程学院,中北大学 机械与动力工程学院,中北大学 机械与动力工程学院
基金项目:山西省自然科学基金资助项目(2012011023-2);
摘    要:柴油机连杆衬套-活塞销摩擦副的耐磨性能直接影响柴油机的使用寿命。基于完全析因试验,以主轴转速、配合间隙、加载载荷作为试验因素,磨损量作为评价指标,获得试验因素主效应及交互效应的主次顺序。结果表明:试验因素之间的交互效应是存在的,且超过某些单个因素的主效应。另外在单个因素中,主轴转速的主效应最强。利用RBF神经网络对高转速下的连杆衬套磨损量进行的预测,将预测值与实测值进行对比,发现网络具有较强的预报性能,可以有效提高参数的设计效率及降低实际实验所需的成本。

关 键 词:磨损量  交互效应  RBF神经网络
收稿时间:2016-09-10
修稿时间:2016-11-15

Analysis on the Wear Loss of Connecting Rod Bushing Based on Factorial Experiment
FAN Wenxin,CAO Cuncun and YANG Hualong. Analysis on the Wear Loss of Connecting Rod Bushing Based on Factorial Experiment[J]. Science Technology and Engineering, 2017, 17(11)
Authors:FAN Wenxin  CAO Cuncun  YANG Hualong
Abstract:The wear resistance of the connecting rod bushing of the diesel engine has a direct influence on the service life of the diesel engine. With the spindle speed, the coordination gap and the load as the experimental factors, and wear loss as evaluation index, the main effects and interaction effects of the experimental factors were obtained based on the full factorial experiment. The results show that the interaction effect between experimental factors is existed, and this interaction effect surpass the main effect of a certain factor to some degree. In addition, the main effect of the spindle speed is the strongest in the single factor. Using RBF neural network to predict the wear loss of connecting rod bushing in highSrotationalSspeed and compared with the measured value, it is found that RBF neural network has strong prediction performance. It can effectively improve the design efficiency of parametersSand reduce the cost of actual experiment.
Keywords:Wear loss   interaction effect   RBF neural network
本文献已被 CNKI 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号