首页 | 本学科首页   官方微博 | 高级检索  
     

BP神经网络在水华短期预测中的应用
引用本文:殷高方,张玉钧,胡丽,王志刚,肖雪,石朝毅,于绍惠,段静波,刘文清. BP神经网络在水华短期预测中的应用[J]. 北京理工大学学报, 2012, 32(6): 655-660
作者姓名:殷高方  张玉钧  胡丽  王志刚  肖雪  石朝毅  于绍惠  段静波  刘文清
作者单位:中国科学院环境光学与技术重点实验室;中国科学院安徽光学精密机械研究所 安徽 合肥230031;合肥学院建筑工程系 安徽 合肥230022;扬州大学环境科学与工程学院 江苏 扬州225009
基金项目:国家"八六三"计划项目(2007AA061502,2009AA063005);国家重大科技专项资助项目(2009ZX07420-008-005);安徽省自然科学基金项目(11040606M26);合肥学院科研发展基金资助项目(12KY05ZR);安徽光学精密机械研究所所长基金资助项目(Y03AG31144)
摘    要:为解决影响因素多、作用关系复杂的水华预测问题,将BP神经网与水体环境因子的高频实测数据相结合,构建了巢湖水华的短期动态预测模型,该模型准确地预测了每次水华发生的时间,预测值与实际观测值相关系数可达0.608 4;在分析BP神经网络自身局限性的基础上,研究了建模过程中输入输出数据预处理、网络结构设计、训练模式选择等问题,给出了水华预测中确定环境因子和建模方案的具体方法.该方法容易移植到其它湖库,提高了模型的实用性和通用性.

关 键 词:BP神经网络  水华  短期预测模型
收稿时间:2011-03-31

Application of BP Neural Network in Algal Blooms Short-Term Forecast
YIN Gao-fang,ZHANG Yu-jun,HU Li,WANG Zhi-gang,XIAO Xue,SHI Chao-yi,YU Shao-hui,DUAN Jing-bo and LIU Wen-qin. Application of BP Neural Network in Algal Blooms Short-Term Forecast[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2012, 32(6): 655-660
Authors:YIN Gao-fang  ZHANG Yu-jun  HU Li  WANG Zhi-gang  XIAO Xue  SHI Chao-yi  YU Shao-hui  DUAN Jing-bo  LIU Wen-qin
Affiliation:Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China;Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China;Department of Architectural Engineering, Hefei University, Hefei, Anhui 230022, China;Environmental Science and Engineering, School of Yangzhou University, Yangzhou, Jiangsu 225009, China;Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China;Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China;Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China;Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China;Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
Abstract:Forecast of algal blooms is a difficult problem because it is influenced by many factors that are in complex relation. This paper for the first time presents a short-term forecast model of the algal blooms in Chaohu Lake based on the combination of high-frequency measured values of environmental factors in water with BP neural network technique. The model could accurately forecast the time of each bloom, and the correlation coefficient between the forecasted and observed values is up to 0.608 4. Further, the issues in the modeling process were analyzed such as the limitation of BP neural network, the input and output data preprocessing, network structure design, training mode selection and other aspects. Finally, a specific method to select environmental factors and its modeling scheme were determined. The proposed model could be easily used on other lakes showing its strong practicability and universality.
Keywords:BP neural network  algal blooms  short-term forecast model
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号