首页 | 本学科首页   官方微博 | 高级检索  
     

基于层次化上下文因式分解机的推荐系统
引用本文:秦大路,李晓宇. 基于层次化上下文因式分解机的推荐系统[J]. 河南师范大学学报(自然科学版), 2015, 0(2): 147-151
作者姓名:秦大路  李晓宇
作者单位:郑州大学信息工程学院
基金项目:国家自然科学基金(61073023)
摘    要:在基于协同过滤的推荐系统中,因式分解机模型是基于矩阵分解的一般化模型,不需要特定支持向量,可直接应用于回归和分类中,并能更准确地处理稀疏矩阵.通过对其进行改进,在不提高时间复杂度的同时考虑上下文环境,并对上下文进行层次化处理.通过两组真实数据集,在不同的指标下进行实验.最后证实改进后的模型,在准确率和学习速率上优于原有模型.

关 键 词:推荐系统  协同过滤  矩阵分解  上下文环境  因式分解机

Recommendation System Research Based on Hierarchical Context Factorization Machines
QIN Dalu;LI Xiaoyu. Recommendation System Research Based on Hierarchical Context Factorization Machines[J]. Journal of Henan Normal University(Natural Science), 2015, 0(2): 147-151
Authors:QIN Dalu  LI Xiaoyu
Affiliation:QIN Dalu;LI Xiaoyu;Information Engineering College,Zhengzhou University;
Abstract:In the recommender systems based on collaborative filtering,the factorization machines model(FM)is a generalized model based on matrix factorization method which needs no specific support vectors.It can be applied in regression and classification and process sparse matrix exactly.By modifying FM it's possible to consider the context and implement hierarchical processing the context without improving the time complexity.Experiments on two group of real data have been done under different indices.It's proved that the modified model is better than the previous models in accuracy rate and learning speed.
Keywords:recommended system  collaborative filtering  matrix factorization  context  factorization machines
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号