首页 | 本学科首页   官方微博 | 高级检索  
     

基于邻域互信息和自组织映射的特征基因选取
引用本文:徐久成,徐天贺,孙 林,任金玉. 基于邻域互信息和自组织映射的特征基因选取[J]. 河南师范大学学报(自然科学版), 2014, 0(1): 145-150
作者姓名:徐久成  徐天贺  孙 林  任金玉
作者单位:;1.河南师范大学计算机与信息工程学院;2.河南省高校计算智能与数据挖掘工程技术研究中心
摘    要:针对基因表达谱数据的高维度、低样本和连续型等特点,提出一种结合邻域互信息和自组织映射进行特征基因选取的方法.首先提出一种改进的Relief算法,对基因进行排序生成候选特征集合;然后提出基于邻域互信息的自组织映射算法对生成的候选特征基因进行聚类;最后利用提出的属性重要性系数从每一类簇中选择代表基因组成特征基因子集.实验结果表明,该方法可以快速有效地选取肿瘤特征基因,能获得较好的分类结果.

关 键 词:邻域互信息  Relief算法  自组织映射  聚类  基因选取

Gene Selection Based on Neighborhood Mutual Information and Self-organizing Map
Affiliation:,College of Computer &Information Engineering,Engineering Technology Research Center for Computing Intelligence & Data Mining,Henan Normal University
Abstract:Aiming at the features of high dimension and small size of samples in gene expression data,a new method which combine neighborhood mutual information with self-organizing map for feature gene selection was proposed.Firstly,an improved Relief feature selection algorithm was proposed to sequence genes,and generate candidate feature subsets.Then,a novel Self-organizing map based on neighborhood mutual information was employed,which was used to carry out gene clustering.Finally,the representative gene from each category was chose to constitute feature subset.The experiment results show that the method can select cancer informative genes promptly and effectively,and obtain better classification results.
Keywords:neighborhood mutual information  Relief algorithm  self-organizing map  clustering  gene selection
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号