首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的空中目标威胁评估方法
引用本文:柴慧敏,张勇,李欣粤,宋雅楠. 基于深度学习的空中目标威胁评估方法[J]. 系统仿真学报, 2022, 34(7): 1459-1467. DOI: 10.16182/j.issn1004731x.joss.21-0080
作者姓名:柴慧敏  张勇  李欣粤  宋雅楠
作者单位:1.西安电子科技大学计算机科学与技术学院,陕西 西安 7100712.光电信息控制和安全技术重点实验室,天津 300308
基金项目:装备预研重点实验室基金(6142107190106)
摘    要:针对空中目标威胁评估因素多、现有评估方法缺乏自学习能力的问题,采用深度学习理论建立了空中目标威胁评估的深层神经网络模型。为了提升模型训练的拟合效果,提出采用对称式的预训练方法,逐层地对模型中的隐含层进行预训练,最后对模型进行整体训练。分别通过样本测试集和空空仿真场景进行验证测试,结果表明:采用对称预训练方法,模型的威胁评估准确率高于其他三种预初始化方法;模型具有较好的鲁棒性,在无噪声下准确率大于90%,10%的正态噪声下,准确率大于70%。

关 键 词:空中目标  威胁评估  深度学习  对称式预训练
收稿时间:2021-01-27

Aerial Target Threat Assessment Method based on Deep Learning
Huimin Chai,Yong Zhang,Xinyue Li,Yanan Song. Aerial Target Threat Assessment Method based on Deep Learning[J]. Journal of System Simulation, 2022, 34(7): 1459-1467. DOI: 10.16182/j.issn1004731x.joss.21-0080
Authors:Huimin Chai  Yong Zhang  Xinyue Li  Yanan Song
Affiliation:1.School of Computer Science and Technology, Xidian University, Xi'an 710071, China2.Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
Abstract:Due to many factors of aerial target threat assessment and the lack of self-learning ability of current assessment methods, a deep neural network model for aerial target threat assessment is established using deep learning theory. In order to improve the fitting effect of the model training, a symmetric pre-training method is given. The hidden layers of the model are pre-trained layer by layer, and finally the whole model is trained. Sample data and air to air simulation scene experiments are carried out respectively. The experiments results show that the accuracy of the model using the symmetric pre-training method is higher than the other three initialization methods. The accuracy of the model is more than 90% without noise and more than 70% under 10% normal noise, which shows its better robustness.
Keywords:aerial target  threat assessment  deep learning  symmetrical pre-training  
点击此处可从《系统仿真学报》浏览原始摘要信息
点击此处可从《系统仿真学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号