首页 | 本学科首页   官方微博 | 高级检索  
     

基于轻小型无人机雷达的植被高度反演方法
引用本文:吴志鹏,张平,李震,黄磊,刘畅,高硕. 基于轻小型无人机雷达的植被高度反演方法[J]. 系统工程与电子技术, 2022, 44(12): 3667-3675. DOI: 10.12305/j.issn.1001-506X.2022.12.10
作者姓名:吴志鹏  张平  李震  黄磊  刘畅  高硕
作者单位:1. 中国科学院空天信息创新研究院, 北京 1000942. 三亚中科遥感研究所 海南省地球观测重点实验室, 海南 三亚 5720293. 中国科学院大学, 北京 100049
基金项目:海南省财政科技计划-海南省重点研发计划(ZDYF2019002);中国科学院空天信息创新研究院重点部署项目(Y950930Z2F)
摘    要:针对目前主流雷达传感器难以满足轻小型无人机载荷需要,且存在着数据获取成本高及算法模型复杂的问题,在自行研制的一种高度集成、轻量化且具有高可靠性的轻小型无人机雷达系统基础上,发展了一种植被高度信息反演新方法。该方法中使用二维滤波抑制直耦波能量,基于剩余图像熵的自适应主元分析去噪方法解决传统方法主元选择不稳定的问题,并基于互相关信息的后向投影算法进一步增强目标信号,最后应用Sobel算子提取植被高度。实验结果表明,该方法反演得到的植被高度和验证数据的相关性达到0.92,均方根误差可达1.28 m。

关 键 词:轻小型无人机  无人机雷达  模块化雷达系统  植被高度  反演
收稿时间:2021-06-21

Vegetation height inversion method based on light-weighted and small UAV-radar
Zhipeng WU,Ping ZHANG,Zhen LI,Lei HUANG,Chang LIU,Shuo GAO. Vegetation height inversion method based on light-weighted and small UAV-radar[J]. System Engineering and Electronics, 2022, 44(12): 3667-3675. DOI: 10.12305/j.issn.1001-506X.2022.12.10
Authors:Zhipeng WU  Ping ZHANG  Zhen LI  Lei HUANG  Chang LIU  Shuo GAO
Affiliation:1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China2. Key Laboratory of Earth Observation of Hainan Province, Sanya Institute of Remote Sensing, Sanya 572029, China3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:At present, the mainstream radar sensors are difficult to meet the demands of the light-weighted and small unmanned aerial vehicle (UAV), which usually need high cost of data acquisition and complicate models of algorithm. A highly integrated, lightweight and reliable radar system is designed, which can be carried on the light-weighted and small UAV. Based on this system, a novel method has been developed for vegetation height information inversion. The inversion algorithm suppress the direct coupled wave by two-dimensional filtering, settle the unstable selection of principle component by the adaptive principle component analysis denoising method with residual image entropy, further enhance the target signal by the back-projection algorithm based on cross-correlation information, and finally extract the vegetation height by implementing Sobel operator. The experiment results show that the correlation between the vegetation height derived from the proposed method and the verified data is 0.92, and the root mean square error is 1.28 m.
Keywords:light-weighted and small unmanned aerial vehicle (UAV)  UAV-radar  modular radar system  vegetation height  inversion  
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号