首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度残差神经网络的电阻层析成像及流型辨识方法
引用本文:仝卫国,曾世超,张立峰,侯哲,郭佳跃. 基于深度残差神经网络的电阻层析成像及流型辨识方法[J]. 系统仿真学报, 2022, 34(9): 2028-2036. DOI: 10.16182/j.issn1004731x.joss.21-0294
作者姓名:仝卫国  曾世超  张立峰  侯哲  郭佳跃
作者单位:华北电力大学 自动化系,河北  保定  071003
基金项目:国家自然科学基金(61773160)
摘    要:针对电阻层析成像(electrical resistance tomography, ERT)反问题成像精度和流型识别准确率偏低的问题,提出一种基于深度残差神经网络的两相流电阻层析成像及流型识别方法。利用有限元法对ERT正问题建模,构造多种气液两相流分布状态的“边界电压–电导率分布–流型类别”数据集。搭建用于气液两相流ERT图像重建和流型辨识的残差神经网络模型并进行网络训练,将残差神经网络的两个输出分别进行数据处理,得到重建的电导率分布图像和流型辨识结果。仿真与静态实验结果表明:该方法能够同时实现成像及流型辨识的需求,具有重建图像精度高、泛化性和抗噪性强、流型辨识准确度高的特点。

关 键 词:残差神经网络  深度学习  电阻层析成像  图像重建  流型辨识
收稿时间:2021-04-06

Electrical Resistance Tomography and Flow Pattern Identification Method Based on Deep Residual Neural Network
Weiguo Tong,Shichao Zeng,Lifeng Zhang,Zhe Hou,Jiayue Guo. Electrical Resistance Tomography and Flow Pattern Identification Method Based on Deep Residual Neural Network[J]. Journal of System Simulation, 2022, 34(9): 2028-2036. DOI: 10.16182/j.issn1004731x.joss.21-0294
Authors:Weiguo Tong  Shichao Zeng  Lifeng Zhang  Zhe Hou  Jiayue Guo
Affiliation:Department of Automation, North China Electric Power University, Baoding 071003, China
Abstract:Aiming at the low accuracy of inverse problem imaging and flow pattern recognition in electrical resistance tomography (ERT), a two-phase flow electrical resistance tomography and flow pattern recognition method based on the deep residual neural network is proposed. The finite element method is used to model the ERT forward problem to construct the "boundary voltage-conductivity distribution-flow pattern category" dataset of various gas-liquid two-phase flow distributions. The residual neural network for ERT image reconstruction and flow pattern identification of gas-liquid two-phase flow is built and trained. The two outputs of the residual neural network are processed respectively to obtain the reconstructed conductivity distribution images and flow pattern identification results. The simulation and static experimental results show that the method can achieve the requirements of imaging and flow pattern identification simultaneously, and has the characteristics of high precision of reconstructed images. And the model is strong generalization and robustness to noise, and has the high accuracy of flow pattern identification.
Keywords:residual neural network  deep learning  electrical resistance tomography (ERT)  image reconstruction  flow pattern identification  
点击此处可从《系统仿真学报》浏览原始摘要信息
点击此处可从《系统仿真学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号