首页 | 本学科首页   官方微博 | 高级检索  
     

基于决策树和BN的自动驾驶车辆行为决策方法
引用本文:刘延钊,黄志球,沈国华,王金永,徐恒. 基于决策树和BN的自动驾驶车辆行为决策方法[J]. 系统工程与电子技术, 2022, 44(10): 3143-3154. DOI: 10.12305/j.issn.1001-506X.2022.10.18
作者姓名:刘延钊  黄志球  沈国华  王金永  徐恒
作者单位:1. 南京航空航天大学计算机科学与技术学院, 江苏 南京 2111062. 南京航空航天大学高安全系统的软件开发与验证技术工业和信息化部重点实验室, 江苏 南京 2111063. 软件新技术与产业化协同创新中心, 江苏 南京 210093
摘    要:交通环境中存在着众多影响自动驾驶车辆行为决策安全的不确定性因素, 准确并及时地处理不确定性因素对自动驾驶车辆安全至关重要。因此, 建立了以人工驾驶行为分类为基础的贝叶斯网络(Bayesian network, BN)行为决策模型。利用决策树分类算法对人工驾驶行为进行分类, 利用BN建模驾驶环境并生成最优驾驶动作, 此方法既可以及时地分析人类驾驶员行为类别, 又能够充分考虑驾驶场景中的不确定性因素。利用仿真工具PreScan设计仿真实验, 仿真结果表明行为决策模型能够给出安全、合理的自动驾驶车辆行为。

关 键 词:自动驾驶车辆  行为决策  贝叶斯网络  决策树  PreScan仿真  
收稿时间:2021-06-01

Behavioral decision-making methods of autonomous vehicles based on decision tree and BN
Yanzhao LIU,Zhiqiu HUANG,Guohua SHEN,Jinyong WANG,Heng XU. Behavioral decision-making methods of autonomous vehicles based on decision tree and BN[J]. System Engineering and Electronics, 2022, 44(10): 3143-3154. DOI: 10.12305/j.issn.1001-506X.2022.10.18
Authors:Yanzhao LIU  Zhiqiu HUANG  Guohua SHEN  Jinyong WANG  Heng XU
Affiliation:1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China2. Key Laboratory of Safety-Critical Software Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China3. Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210093, China
Abstract:There are many factors that affect autonomous vehicles' behavioral decision-making in the traffic environment. It is very important for the safety of autonomous vehicles to handle uncertainty factors accurately and timely. To this end, we design a behavioral decision-making model of Bayesian network (BN) based on classification of human driving behaviors. The decision tree classification algorithm is used to classify the driving behaviors of human driving vehicles, The BN is used to model the driving scene and create the best driving behavior. It not only analyzes the human driving behavioral style timely, but also takes into account the uncertain factors in the driving scene. We design the PreScan simulation experiments, the simulation results show that the behavioral decision model can provide safe and reasonable behavior of autonomous vehicles.
Keywords:autonomous vehicles  behavioral decision-making  Bayesian network (BN)  decision tree  PreScan simulation  
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号