Super-resolution image reconstruction based on three-step-training neural networks |
| |
Authors: | Fuzhen Zhu Jinzong Li Bing Zhu Dongdong Ma |
| |
Affiliation: | Institute of Image Information Technology and Engineering,Harbin Institute of Technology,Heilongjiang 150001,P.R.China |
| |
Abstract: | A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three grouplearning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method. |
| |
Keywords: | image reconstruction super-resolution three-steptraining neural network BP algorithm vector mapping |
本文献已被 维普 万方数据 等数据库收录! |
| 点击此处可从《系统工程与电子技术(英文版)》浏览原始摘要信息 |
|
点击此处可从《系统工程与电子技术(英文版)》下载免费的PDF全文 |