首页 | 本学科首页   官方微博 | 高级检索  
     

降雨条件下城市快速路车速模糊神经网络预测方法
引用本文:孙洪运,杨金顺,李林波,吴兵. 降雨条件下城市快速路车速模糊神经网络预测方法[J]. 同济大学学报(自然科学版), 2016, 44(11): 1695-1701
作者姓名:孙洪运  杨金顺  李林波  吴兵
作者单位:同济大学 道路与交通工程教育部重点实验室,上海 201804,青岛理工大学 汽车与交通学院,山东 青岛 266555,同济大学 道路与交通工程教育部重点实验室,上海 201804,同济大学 道路与交通工程教育部重点实验室,上海 201804
摘    要:为了提高降雨条件下快速路车速短时预测的准确性,考虑到各影响因素的模糊性以及影响作用非线性变化特点,提出了一个以交通量、占有率和降雨量为输入,以车速为输出的模糊神经网络预测方法.利用上海市快速路的交通流与气象数据确定了最优模型结构,并与自回归积分滑动平均模型、反向传播神经网络模型和支持向量机模型进行对比分析.该方法的预测均方根误差为3.05km·h-1,预测平均误差为3.95%,均优于其他3种方法.

关 键 词:快速路  车速预测  模糊神经网络  交通状态  降雨
收稿时间:2015-10-06
修稿时间:2016-08-30

Fuzzy Neural Network System for Urban Expressway Speed Prediction on Rainy Days
SUN Hongyun,YANG Jinshun,LI Linbo and WU Bing. Fuzzy Neural Network System for Urban Expressway Speed Prediction on Rainy Days[J]. Journal of Tongji University(Natural Science), 2016, 44(11): 1695-1701
Authors:SUN Hongyun  YANG Jinshun  LI Linbo  WU Bing
Affiliation:Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China,School of Automobile and Transportation, Qingdao University of Technology, Qingdao 266555, China,Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China and Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China
Abstract:A fuzzy neural network system was developed to improve urban expressway short term speed prediction accuracy on rainy days, taking fuzzy influencing factors such as traffic volume, occupancy and precipitation, as well as their non linear interaction into account. Based on the traffic flow and weather data of Shanghai, the best model structure was determined and its performance was evaluated against those of the existing autoregressive integrated moving average model, the back propagation neutral network, and the support vector machines model. The results show that the root mean square error and mean absolute percent error of the fuzzy neural network system are 3.05 km?h-1 and 3.95% respectively, which outperform those of the other three prediction models.
Keywords:urban expressway   speed prediction   fuzzy neural network   traffic state   rainfall
本文献已被 CNKI 等数据库收录!
点击此处可从《同济大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《同济大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号