首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ca2+-activated ATPase and ATP-dependent calmodulin-stimulated Ca2+ transport in islet cell plasma membrane
Authors:H A Pershadsingh  M L McDaniel  M Landt  C G Bry  P E Lacy  J M McDonald
Abstract:Calcium is known to play an essential part in the regulation of insulin secretion in the pancreatic beta cell. Calcium influx/efflux studies indicate that glucose promotes an accumulation of calcium by the beta cell. However, interpretation of such data is particularly difficult due to the complex compartmentalization of calcium within the cell. Although indirect evidence using chlorotetracycline suggests that control of calcium homeostasis at the plasma membrane may be central to insulin secretion, the mechanism by which secretagogues influence the handling of calcium remains unknown. Despite its continuous diffusive entry, intracellular calcium is maintained in the submicromolar range by energy-dependent mechanisms. One such process which has been well characterized in erythrocytes is a plasma membrane calcium extrusion pump whose enzymatic basis is a high affinity (Ca+2 + Mg+2)ATPase. A similar mechanism regulated by insulin has recently been identified in adipocyte plasma membranes. We report here the presence of a high affinity (Ca+2 + Mg+2)ATPase and ATP-dependent calmodulin-stimulated calcium transport system in rat pancreatic islet cell plasma membranes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号