首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于模糊推理的神经网络学习算法
引用本文:周颢,任庆生,戚飞虎. 一种基于模糊推理的神经网络学习算法[J]. 上海交通大学学报, 2004, 38(1): 96-98,102
作者姓名:周颢  任庆生  戚飞虎
作者单位:上海交通大学,计算机科学与工程系,上海,200030
摘    要:提出了一种新的神经网络学习算法.相对于其他学习算法,该算法侧重于网络参数的调整,通过对样本集的模糊推理、调整和分类学习来实现自适应的神经网络学习.结果表明,该算法能大大提高神经网络的学习速度和学习效率,并能从样本集中得到反常样本和小概率事件样本,对小概率事件样本有很好的学习能力.

关 键 词:人工神经网络 误差反向传播算法 模糊推理
文章编号:1006-2467(2004)01-0096-03

A Neural Network Learning Algorithm Based on Fuzzy Deduction
ZHOU Hao,REN Qing-sheng,QI Fei-hu. A Neural Network Learning Algorithm Based on Fuzzy Deduction[J]. Journal of Shanghai Jiaotong University, 2004, 38(1): 96-98,102
Authors:ZHOU Hao  REN Qing-sheng  QI Fei-hu
Abstract:A new algorithm was proposed which improves the training of neural networks. Different from previous approaches, this new approach focuses on the samples. With self-adaptive fuzzy deduction, classification and classified training, it achieves a better training performance. This algorithm was tested and works quite well. Besides its efficiency, the good ability to detect abnormal and low-probable samples is also worth notice.
Keywords:artificial neural network  error back propagation algorithm (BP)  fuzzy deduction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号