摘 要: | Nano-hydroxyapatite/poly( ε-caprolactone)( n HA/PCL)composite materials are among the best candidates for application in bone tissue engineering. As the main technique to fabricate porous scaffolds, electrospinning produce scaffolds with unsatisfactory mechanical strength and limited pore size for cell infiltration.Micron-sized fiber assembly with higher mechanical strength is qualified to structure hybrid scaffolds. In this study, n HA/PCL monofilament fibers with different mass ratios were fabricated through melt-spinning. Transmission electron microscope( TEM)was used to observe the aggregation between n HA particles. Other characterizations including scanning electron microscopy( SEM),attenuated total reflection Fourier transform infrared spectroscopy( ATR-FTIR) and X-ray diffraction( XRD) were done to discuss the morphology, components and crystallization of the n HA/PCL composite fibers, respectively. The influence of n HA/PCL mass ratio on the tensile properties and water contact angle of composite fibers was also studied. The SEM images show the homogeneous dispersion of nano particles in the polymer matrix. Besides,n HA content increases the tensile strength, initial modulus and hydrophilicity of the composite fibers under the premise of spinnability. This kind of fibers is strong enough to fabricate fiber assembly which may have potential application in bone tissue engineering.
|