首页 | 本学科首页   官方微博 | 高级检索  
     


In vitro modulation of rat adipocyte ghost membrane fluidity by cholesterol oxysterols
Authors:Dr. W. F. Lau  N. P. Das
Affiliation:(1) Department of Biochemistry, Faculty of Medicine, National University of Singapore, 10 Kent Ridge Crescent, 0511 Singapore, (Republic of Singapore)
Abstract:The effects of cholesterol and cholesterol-derived oxysterols (cholestanone, cholestenone, coprostanone and epicoprostanol) on adipocyte ghost membrane fluidity were studied using a fluorescence depolarization method. The fluorescence anisotropy of the treated membranes was determined using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH). Cholestanone and cholesterol decreased membranes fluidity at both the concentrations tested (10 & 50 mgrM) while the rest of the sterols did not exert any significant effect on membrane fluidity. In the presence of epinephrine, cholestanone partitioned more towards the lipid core but cholesterol partitioning was not affected. The fusion activation energies (DeltaE) obtained for membranes preincubated with cholestanone (8.6 kcal/mol) and cholesterol (8.2 kcal/mol) were not significantly different from that of untreated membranes (8.3 kcal/mol). Membranes preincubated with cholestanone and cholesterol did not exhibit any change in lipid phase throughout the temperature range (10–45°C) tested. The sterols were found to inhibit fisetin-induced phospholipid methylation in isolated rat adipocytes in the rank order of cholesterol > epicoprostanol > cholestanone=cholestenone=coprostanone, while basal methylations was unaffected. When adipocytes were preincubated with the sterols before the addition of fisetin, cholestanone and cholestenone showed 74% and 66% inhibition of maximal methylation respectively. These results indicated that cholesterol oxysterols interact differently with rat adipocyte membranes, with cholestanone interacting more with phospholipids located at the inner lipid bilayer (e.g. phosphatidylethanolamine) while cholesterol interacts more with phosphatidylcholine located at the outer lipid bilayer. This differential interaction may cause selective changes in membrane fluidity at different depths of the bilayer and thus may modulate the activities of membrane-bound proteins such as enzymes and receptors.
Keywords:Rat adipocyte  adipocyte ghost membrane  membrane fluidity  cholesterol oxysterols  fluorescence anisotropy
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号