摘 要: | 针对锂电池荷电状态(SOC)估算面临的大型数据集获取困难和训练速度慢的问题,结合深度学习和迁移学习提出一种小样本锂电池荷电状态估算方法。基于卷积-长短期记忆网络(CNN-LSTM)构建深度神经网络结构。在源域上采用K折交叉验证对NASA数据集进行划分,选取SOC估计性能最优的网络,利用目标域内具有多种工况和温度条件的Panasonic小样本数据进行迁移学习。为了提升方法的整体性能,分析了网络超参数对SOC估计结果的影响。实验结果表明:在相同的迭代次数下,该方法在不同的工况下可以较准确地实现小样本电池SOC估计,相较于非小样本迁移学习处理方法的均方根误差降低了47.29%。
|