摘 要: | 目前,为了应对数以百万计的Android恶意软件,基于机器学习的检测器被广泛应用,然而其普遍存在防对抗攻击能力差的问题,对恶意软件对抗样本生成方法的研究有助于促进恶意软件检测领域相关研究的发展.黑盒场景下的对抗样本生成技术更加符合现实环境,但相较于白盒场景效果不佳.针对这一问题,本文提出了一种基于SNGAN的黑盒恶意软件对抗样本生成方法,将图像领域的SNGAN方法迁移到恶意软件领域,通过生成器网络和替代检测器网络的迭代训练生成对抗样本,并通过谱归一化来稳定训练过程.该方法能够对已有的恶意软件添加扰动,达到欺骗机器学习检测器的效果.实验结果证明,该方法对多种机器学习分类器均可以有效规避检测,验证了方法的可行性和可迁移性.
|