首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Combustion forming hollow nanospheres as a ceramic fortress for flame-retardant fiber
Authors:Gongxun Zhai  Jialiang Zhou  Hengxue Xiang  Mugaanire tendo Innocent  Senlong Yu  Weinan Pan  Lili Li  Meifang Zhu
Institution:State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
Abstract:Simple, effective and safe flame retardants are required to improve flame retardant properties of polymer fibers.However, traditional additive flame retardants, such as halogen-flame retardants and intumescent flame retardants, are likely to cause phase separation of functional phases due to their poor dispersibility and compatibility, or are difficult to be suitable for the high temperature processing conditions of melt-spun fibers. Here, in an effort to develop a practical flame retardant system in which zinc diphosphinate(DEPZn) and D-glucose(DG)were selectively incorporated into polyethylene terephthalate(PET) fiber was developed. As a result, the dense nano-scale zinc phosphate microspheres were formed on the surface and inside the residual carbon during combustion. Thus, PET fibers were endowed with excellent flame retardancy through a thermal barrier and enhancement of physical strength for the carbon layer. Moreover, a synergistic flame-retardant effect was found between DEPZn and DG. DG reduced the size of the zinc phosphate nanosphere from 200 nm to 50 nm, making the carbon layer denser and smoother. As a result, the peak heat release of the resultant PET composite fiber decreased to 410 k W/m~2 compared 1276 k W/m~2 for neat PET fiber. Moreover, the total smoke release also dropped from 71 MJ/kg of neat PET fiber to 64 MJ/kg for PET composite fibers. These results provide a promising strategy for the production of industrialized PET flame retardant fibers.
Keywords:Flame retardant fiber  PET  Zinc phosphate  Hollow nanospheres
本文献已被 CNKI ScienceDirect 等数据库收录!
点击此处可从《自然科学进展(英文版)》浏览原始摘要信息
点击此处可从《自然科学进展(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号