首页 | 本学科首页   官方微博 | 高级检索  
     

认知无线网络中频谱预测技术研究进展
引用本文:罗欢,曹开田,钱平,邓菲. 认知无线网络中频谱预测技术研究进展[J]. 上海应用技术学院学报:自然科学版, 2020, 20(1): 71-78
作者姓名:罗欢  曹开田  钱平  邓菲
作者单位:上海应用技术大学 电气与电子工程学院, 上海 201418,上海应用技术大学 电气与电子工程学院, 上海 201418,上海应用技术大学 电气与电子工程学院, 上海 201418,上海应用技术大学 电气与电子工程学院, 上海 201418
基金项目:国家自然科学基金(61703279);上海市自然科学基金(19ZR1455200);上海应用技术大学中青年科技人才发展基金(ZQ2018-24);上海应用技术大学引进人才基金项目(YJ2018-11)资助
摘    要:随着无线网络业务的迅猛增长,稀缺的无线频谱资源成为制约无线通信技术发展的瓶颈。认知无线电技术通过对授权频谱进行二次利用的方法为缓解频谱资源匮乏与日益增长的无线业务需求之间的矛盾提供了一种十分有效的技术解决方案。频谱预测技术作为认知无线电的关键技术之一,其在降低系统能量消耗,提高系统灵敏度,降低频谱冲突及提高系统容量等方面发挥重要作用。为此,对认知无线网络中频谱预测技术的研究现状及最新进展进行较为全面和深入的研究,从频谱感知,频谱决策,频谱迁移及频谱共享等4个方面对频谱预测技术及其在认知无线网络中的应用进行了分析,并指出频谱预测技术未来的发展趋势及存在的挑战。

关 键 词:认知无线电   频谱感知   频谱决策   频谱迁移   频谱共享
收稿时间:2019-04-22

Research Progress of Spectrum Prediction Techniques in Cognitive Radio Networks
LUO Huan,CAO Kaitian,QIAN Ping and DENG Fei. Research Progress of Spectrum Prediction Techniques in Cognitive Radio Networks[J]. Journal of Shanghai Institute of Technology: Natural Science, 2020, 20(1): 71-78
Authors:LUO Huan  CAO Kaitian  QIAN Ping  DENG Fei
Affiliation:School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 201418, China,School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 201418, China,School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 201418, China and School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 201418, China
Abstract:With the rapid growth of wireless network services, the scarce wireless spectrum resources have become a bottleneck restricting the development of wireless communication technologies. Cognitive Radio (CR) technology provides a very effective technical solution to alleviate the contradiction between spectrum resource scarcity and the growing demand for wireless services through the secondary utilization of licensed spectrum. As one of the key technologies of CR, spectrum prediction technique plays an important role in reducing system energy consumption, improving system sensitivity, reducing spectrum conflicts and increasing system capacity. Therefore, an in-depth and comprehensive study on the research status and the latest progress of spectrum prediction techniques in cognitive radio networks (CRNs) were conducted. The spectrum prediction technique and its application in CRNs were analyzed from the perspectives of spectrum sensing, spectrum decision, spectrum mobility and spectrum sharing. The future development trend and challenges of spectrum prediction technique were pointed out in the end of the paper.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《上海应用技术学院学报:自然科学版》浏览原始摘要信息
点击此处可从《上海应用技术学院学报:自然科学版》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号