首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进高斯粒子滤波器的目标跟踪算法
引用本文:韩松,张晓林,陈雷,徐文进. 基于改进高斯粒子滤波器的目标跟踪算法[J]. 系统工程与电子技术, 2010, 32(6): 1191-1194. DOI: 10.3969/j.issn.1001-506X.2010.06.018
作者姓名:韩松  张晓林  陈雷  徐文进
作者单位:1. 北京航空航天大学电子信息工程学院, 北京 100191;2. 青岛科技大学信息科学工程学院, 山东 青岛 266061
基金项目:"十一五"军事电子预研项目资助课题 
摘    要:针对现有机动目标跟踪中粒子滤波算法的不足,提出了一种改进的粒子滤波方法。该方法在高斯粒子滤波的基础上通过利用当前时刻量测值对量测误差的分布参数进行实时的统计和更新,并以此得到粒子的权值,从而考虑到了量测值对估计值的影响,该方法适合于量测误差分布为高斯白噪声且状态量与量测误差相关条件下的非线性估计。仿真结果表明,与传统的自举粒子滤波(boot trap particle filter, BPF)、高斯粒子滤波(Gaussian particle filter, GPF)以及无迹粒子滤波(unscented particle filter, UPF)相比,该方法具有较高的精度和较少的计算量。

关 键 词:机动目标跟踪  粒子滤波  高斯粒子滤波

Object tracking method based on improved Gaussian particle filter
HAN Song,ZHANG Xiao-lin,CHEN Lei,XU Wen-jin. Object tracking method based on improved Gaussian particle filter[J]. System Engineering and Electronics, 2010, 32(6): 1191-1194. DOI: 10.3969/j.issn.1001-506X.2010.06.018
Authors:HAN Song  ZHANG Xiao-lin  CHEN Lei  XU Wen-jin
Affiliation:1. School of Electronics and Information Engineering, Beihang Univ., Beijing 100191, China;;2. Coll. of Information Science and Technology, Qingdao Univ. of Science and Technology, Qingdao 266061, China
Abstract:An improved method is put forward based on Gaussian particle filter aiming at overcoming the disadvantages of existing particle filter methods. The current measures are taken into consideration to estimate and append the distribution parameters of measure errors for getting the weighted factors of particles. The method can be used to solve non linear problems which have conditions that measure error distribution is Gaussian and state values have relatives with measure errors. Simulation results show more accuracy and less computation cost comparing with traditional PF, UPF and GPF methods.
Keywords:maneuvering target tracking  particle filter  Gaussian particle filter
本文献已被 万方数据 等数据库收录!
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号