首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Correlation between the anaesthetic effect of halothane and saturable binding in brain
Authors:A S Evers  B A Berkowitz  D A d'Avignon
Abstract:Two theories of the molecular mechanism of volatile anaesthetic action suggest either that anaesthetics cause a generalized perturbation of neuronal membrane structure, probably through a nonspecific interaction with membrane lipids, or that anaesthetics bind to sets of sites of appropriate molecular dimension on membrane proteins. Based on the recent finding that fluorinated anaesthetics can be observed in animal tissue by 19F nuclear magnetic resonance (19F-NMR) spectroscopy, we have used 19F-NMR to quantify the interaction between the volatile anaesthetic halothane and rat brain tissue. Steady-state brain halothane concentration was found to be a non-linear function of inspired concentration, with apparent saturation of brain occurring at inspired halothane concentrations above 2.5% by volume. Using a spin-echo pulse sequence it was found that halothane exists in two distinct chemical environments in brain, characterized by different spin-spin relaxation times (T2), chemical shifts and kinetics of occupancy. Halothane concentration in one of these environments (T2 = 3.6 ms) was saturated at approximately 2.5% inspired halothane; occupancy of this environment was found to correlate with the anaesthetic effect of the drug. In the other environment (T2 = 43 ms), brain halothane concentration was a linear function of inspired concentration. These data suggest the existence of a saturable anaesthetic site for halothane in brain and do not support the concept that anaesthetics act by nonspecific membrane perturbation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号