首页 | 本学科首页   官方微博 | 高级检索  
     

基于季节自回归单整移动平均模型的电梯交通流递归预测方法
引用本文:宗群,赵占山,商安娜. 基于季节自回归单整移动平均模型的电梯交通流递归预测方法[J]. 天津大学学报(自然科学与工程技术版), 2008, 41(6): 653-659
作者姓名:宗群  赵占山  商安娜
作者单位:[1]天津大学电气与自动化工程学院,天津300072 [2]陕西理工学院电气系,汉中723001
基金项目:国家自然科学基金 , 教育部高等学校博士学科点专项科研基金 , 天津市科技攻关项目
摘    要:针对电梯交通流预测提出了一种基于季节自回归单整移动平均(SARIMA)模型的递归预测方法.通过离线分析,对电梯交通流利用时间序列分析得到初始的SARIMA模型,引入异常值检测对训练数据中的异常值进行修正,利用修正的序列得到电梯交通流SARIMA模型;在线预测时,将离线得到修正的SARIMA模型转化为状态空间形式.通过Kalman滤波实时调整状态向量,实现电梯交通流的实时在线预测仿真表明该方法具有很好的预测性能,且运行时间短,满足实时性的要求.

关 键 词:电梯交通流预测  季节自回归单整移动平均模型  异常值检测  Kalman滤波  状态空间模型
文章编号:0493-2137(2008)06-0653-07
修稿时间:2007-09-27

Recursive Forecasting Method for Elevator Traffic Flow Based on SARIMA
ZONG Qun,ZHAO Zhan-shan,SHANG An-na. Recursive Forecasting Method for Elevator Traffic Flow Based on SARIMA[J]. Journal of Tianjin University(Science and Technology), 2008, 41(6): 653-659
Authors:ZONG Qun  ZHAO Zhan-shan  SHANG An-na
Affiliation:ZONG Qun, ZHAO Zhan-shan, SHANG An-na ( 1. School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China; 2. Department of Electric, Shanxi University of Technology, Hanzhong 723001, China )
Abstract:A recursive method based on seasonal autoregressive integration moving average ( SARIMA ) model to predict the elevator traffic flow was proposed. By off-line analysis, an initial SARIMA model was developed from time series analysis. And an outlier detection was introduced to amend the sequence, from which the SARIMA model of the traffic flow was obtained. At on-line analysis, the off-line amended SARIMA model was first transformed into a state space model, and then by adjusting the parameters of this model with Kalman filter, the elevator traffic flow on-line prediction was achieved. The simulation results show that the proposed method has good prediction performance and short running time, satisfying the real-time requirements.
Keywords:elevator traffic flow forecasting  seasonal autoregressive integration moving average model  outlier detection  Kalman filter  state-spacemodel
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号