首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Probabilistic Load Flow Algorithm with the Power Performance of Double-Fed Induction Generators
Abstract:Probabilistic load flow(PLF) algorithm has been regained attention, because the large-scale wind power integration into the grid has increased the uncertainty of the stable and safe operation of the power system. The PLF algorithm is improved with introducing the power performance of double-fed induction generators(DFIGs) for wind turbines(WTs) under the constant power factor control and the constant voltage control in this paper. Firstly, the conventional Jacobian matrix of the alternating current(AC) load flow model is modified, and the probability distributions of the active and reactive powers of the DFIGs are derived by combining the power performance of the DFIGs and the Weibull distribution of wind speed. Then, the cumulants of the state variables in power grid are obtained by improved PLF model and more accurate power probability distributions. In order to generate the probability density function(PDF) of the nodal voltage, Gram-Charlier, Edgeworth and Cornish-Fisher expansions based on the cumulants are applied. Finally, the effectiveness and accuracy of the improved PLF algorithm is demonstrated in the IEEE 14-RTS system with wind power integration, compared with the results of Monte Carlo(MC) simulation using deterministic load flow calculation.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号