首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于卫向量的简化支持向量机模型
引用本文:王宇,毛玉欣. 一种基于卫向量的简化支持向量机模型[J]. 大连理工大学学报, 2008, 48(3): 446-450
作者姓名:王宇  毛玉欣
作者单位:大连理工大学,管理学院,辽宁,大连,116024
摘    要:针对支持向量机(SVM)在处理大规模训练集时,训练速度和分类速度变慢的缺点,提出了一种基于卫向量的简化SVM模型.用对偶变换及求解线性规划方法提取卫向量,缩小训练集规模;在此基础上对训练得到的支持向量集,用线性相关性去除冗余支持向量,从而达到简化目的.对UCI标准数据集的实验表明:在保证不损失分类精度的前提下,该模型一定程度上改进了传统SVM,缩短了学习时间,取得了良好的效果.

关 键 词:卫向量  支持向量机  训练集  支持向量集  卫向量  简化  支持向量机模型  vectors  guard  based  simplification  效果  学习时间  改进  程度  前提  分类精度  损失  实验  数据集  标准  冗余  线性相关性  训练速度
文章编号:1000-8608(2008)03-0446-05
修稿时间:2006-06-20

A model for simplification SVM based on guard vectors
WANG Yu MAO Yuxin. A model for simplification SVM based on guard vectors[J]. Journal of Dalian University of Technology, 2008, 48(3): 446-450
Authors:WANG Yu MAO Yuxin
Abstract:A simplification SVM model based on guard vectors is proposed for overcoming the slow speed of training and classification for large scale training set. In order to simplify SVM, the methods of dual transform and linear programming are used to distill guard vectors; based on that, the linearly dependent support vectors are eliminated from SV set. The experiments on the UCI database are done with this algorithm. Results show that in the condition of undeclined correct rate, the running time of this model is reduced and better performance than the standard SVM is achieved.
Keywords:guard vector   support vector machine   training set   support vector set
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《大连理工大学学报》浏览原始摘要信息
点击此处可从《大连理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号