摘 要: | 社会网络数据发布的隐私保护是为了确保数据集中隐私信息的安全.针对社会网络数据发布所面临的隐私保护问题,引入严格的差分隐私保护模型,设计了一种基于马尔科夫算法(Markov cluster algorithm,MCL)并且满足ε-差分隐私的社会网络差分隐私数据发布方法.设计实现了满足ε-差分隐私(MCL differential privacy algorithm,MDPA)算法,以Si为抽样频率,对网络边权重添加满足ε的隐私保护预算,服从拉普拉斯分布的噪声.真实数据集上的实验结果表明,MDPA算法满足用户在社会网络中的差分隐私要求,并提高了数据效用性.
|