首页 | 本学科首页   官方微博 | 高级检索  
     

修正的Cramer奇论及其在多元插值中的应用
引用本文:崔利宏,高静华,刘汉香. 修正的Cramer奇论及其在多元插值中的应用[J]. 辽宁师范大学学报(自然科学版), 2010, 33(3)
作者姓名:崔利宏  高静华  刘汉香
作者单位:1. 辽宁师范大学数学学院,辽宁,大连,116029
2. 大连交通大学基础部,辽宁,大连,116028
3. 瓦房店市第八高级中学数学组,辽宁,大连,116300
摘    要:指出文献[1]中Cramer奇论的不完备之处,并加以修正,同时使用插值法对修正后的Cramer奇论给出证明.利用修正后的Cramer奇论,得到了构造沿平面代数曲线插值适定结点组的一种迭加方法,该方法推广了文献[2]中的主要结果,同时给出2个实例.

关 键 词:Cramer奇论  适定结点组  代数曲线

On corrected Cramer strange proposition and its application in multivariate interpolation
CUI Li-hong,GAO Jing-hua,LIU Han-xiang. On corrected Cramer strange proposition and its application in multivariate interpolation[J]. Journal of Liaoning Normal University(Natural Science Edition), 2010, 33(3)
Authors:CUI Li-hong  GAO Jing-hua  LIU Han-xiang
Affiliation:CUI Li-hong1,GAO Jing-hua2,LIU Han-xiang3(1.School of Mathematics,Liaoning Normal University,Dalian 116029,China,2.Department of Basic Courses,Dalian Jiaotong University,Dalian 116028,3.The Eighth High Senior School in the City of Wafengdian,Dalian 116300,China)
Abstract:In this paper,we indicate some incomplete of the Cramer Strange Proposition in [1] correct the Proposition and prove it by interpolation method.Using the amended Cramer Strange Proposition,some general methods of constructing properly posed set of nodes for interpolation along a plane algebraic curve are acquired,The main resucts in [2] are extended by this methed and some examples of application are also given.
Keywords:Cramer strange proposition  properly posed set of nodes  algebraic curve  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号