首页 | 本学科首页   官方微博 | 高级检索  
     

Pollard p-1因子分解的DNA计算机改进算法
引用本文:王静,李肯立,许进. Pollard p-1因子分解的DNA计算机改进算法[J]. 系统仿真学报, 2008, 20(18)
作者姓名:王静  李肯立  许进
作者单位:衡阳师范学院计算机科学系,湖南大学计算机与通信学院,华中科技大学分子生物计算机研究所
基金项目:国家自然科学基金,教育部科学技术研究项目
摘    要:如何有效地对大整数进行因子分解,是数学上的一个难题.RSA密码体制的安全性正是基于此困难问题.利用DNA计算机超大规模的并行运算能力和数据存储能力,提出一种基于分子生物技术的因子分解问题改进的DNA计算机算法.以因子分解的Pollardp-1算法为基础,设计了基于DNA计算的平方-乘算法以及求取最大公因数的欧几里得子算法,仿真实验结果表明了算法的可行性和有效性.

关 键 词:DNA计算  并行进化算法  因子分解  Pollard P-1方法  改进算法

Improved DNA Algorithm for Factoring Integers Based on Pollard p-1 Method
WANG Jing,LI Ken-li,XU Jin. Improved DNA Algorithm for Factoring Integers Based on Pollard p-1 Method[J]. Journal of System Simulation, 2008, 20(18)
Authors:WANG Jing  LI Ken-li  XU Jin
Abstract:How to factor big integers effectively is a difficult problem in mathematics. The security of the RSA public-key cryptosystem is based on the difficulty of factoring the product of two large prime numbers. Comparing with conventional electronic computers, the main features of DNA computer are massively parallel computing ability and potential enormous data storage capacity. So it proposes an improved DNA algorithm for factoring integers based on biomolecular technology here. The key of the algorithm is that the pollard p-1 method is used. The problem is solved by tube operation that performs addition, subtraction, multiplication and division to accomplish the square_and_multiply algorithm and the Euclidean algorithm to get the greatest common divisor, and then get the result. On the basis of the experiment method of biomolecular, it can be found the algorithm is an effective one.
Keywords:DNA computing  parallel evolutionary algorithm  factoring integers problem  Pollard p-1 method  improved algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号