首页 | 本学科首页   官方微博 | 高级检索  
     

基于多维特征差异的个性化学习资源推荐方法
引用本文:李浩君,张广,王万良,江波. 基于多维特征差异的个性化学习资源推荐方法[J]. 系统工程理论与实践, 2017, 37(11): 2995-3005. DOI: 10.12011/1000-6788(2017)11-2995-11
作者姓名:李浩君  张广  王万良  江波
作者单位:1. 浙江工业大学 教育科学与技术学院, 杭州 310023;2. 浙江工业大学 计算机科学与技术学院, 杭州 310023
基金项目:国家自然科学基金(61503340);国家社会科学基金(16BTQ084)
摘    要:协同过滤算法和二进制粒子群算法是目前学习资源推荐领域研究热点.然而,协同过滤算法推荐的学习资源过于随机化,不能满足学习者进行整体知识建构的要求.而基于二进制粒子群算法构建的资源推荐模型,以推荐所有学习者完整的学习资源为目标,且模型数据较难预测,不符合在线智能化学习的趋势.针对以上问题,提出了基于多维特征差异的个性化学习资源推荐算法:首先根据学习者和学习资源多维特征差异建立学习资源推荐模型,并考虑了学习偏好;其次引入协同过滤技术对模型数据进行预测;最后针对推荐模型的多目标优化特征,将协同过滤算法和二进制粒子群算法结合,提出了对惯性权重和种群多样性进行动态协同调整的自适应二进制粒子群算法,实现了个性化学习资源推荐.实验证明,该算法具有较好的准确性,能够满足个性化学习资源推荐的需要.

关 键 词:个性化学习资源推荐  多维特征差异  自适应二进制粒子群算法  协同过滤推荐算法  
收稿时间:2016-12-22

The method of personalized learning materials recommendation based on multidimensional feature difference
LI Haojun,ZHANG Guang,WANG Wanliang,JIANG Bo. The method of personalized learning materials recommendation based on multidimensional feature difference[J]. Systems Engineering —Theory & Practice, 2017, 37(11): 2995-3005. DOI: 10.12011/1000-6788(2017)11-2995-11
Authors:LI Haojun  ZHANG Guang  WANG Wanliang  JIANG Bo
Affiliation:1. College of Education Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China;2. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
Abstract:Currently, in learning resources recommended field, researchers focus on collaborative filtering algorithm and binary particle swarm optimization (BPSO) algorithm. However, by using collaborative filtering algorithm, the learning resources are recommended with a too randomization way, which cannot meet the requirements of learners in building overall knowledge architecture. Furthermore, the recommended model based on BPSO algorithm asks to recommend the whole learning resources for all learners and the model data is hard to be predicted, which does not conform the development trend of intelligent online learning. In order to deal with the above problems, a personalized learning resources recommendation algorithm is proposed based on multidimensional feature differences. As a first step, learning resources recommended model is established according to the multidimensional feature differences in learners and learning resources, as well as the learning preferences. Next the collaborative filtering technology is adopted to predict model data. Finally, through combining the BPSO algorithm with collaborative filtering algorithm based on the multi-objective optimization characteristics of recommendation model, an adaptive binary particle swarm optimization algorithm is proposed to dynamically coordinate inertia weight and population diversity. As shown in the experiments, it is implemented that meeting the requirements in personalized learning resources recommendation with better precision.
Keywords:personalized learning resources recommendation  multidimensional feature differences  adaptive binary particle swarm optimization algorithm  collaborative filtering recommendation algorithm  
本文献已被 CNKI 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号