首页 | 本学科首页   官方微博 | 高级检索  
     

ABMS中基于Q学习算法的空战目标分配方法
引用本文:谢俊洁,罗鹏程,穆富岭,王骏,丁帅. ABMS中基于Q学习算法的空战目标分配方法[J]. 系统工程与电子技术, 2017, 39(3): 557-561. DOI: 10.3969/j.issn.1001-506X.2017.03.15
作者姓名:谢俊洁  罗鹏程  穆富岭  王骏  丁帅
作者单位:1. 国防科学技术大学信息系统与管理学院, 湖南 长沙 410073;;2. 复杂航空系统仿真实验室, 北京 100076
摘    要:Q学习算法由于不需要先验知识即可学习,对于求解复杂的优化决策问题具有广泛的应用前景。本文针对当前空战目标分配算法的优缺点,提出了ABMS(agent based modeling and simulation)中基于Q学习算法的空战目标分配方法。首先介绍了空战Agent建模;然后给出了Q学习算法应用于空战目标分配的方法流程,并严格定义了“状态动作”对的选择规则,最后通过仿真实验证明了该方法的合理性和有效性。本文方法避免了对先验知识的依赖,并且脱离了局部最优陷阱。


Air combat target assignment in ABMS based on Q-learning algorithm
XIE Junjie,LUO Pengcheng,MU Fuling,WANG Jun,DING Shuai. Air combat target assignment in ABMS based on Q-learning algorithm[J]. System Engineering and Electronics, 2017, 39(3): 557-561. DOI: 10.3969/j.issn.1001-506X.2017.03.15
Authors:XIE Junjie  LUO Pengcheng  MU Fuling  WANG Jun  DING Shuai
Affiliation:1. The Institute of Information System and Management, National University of Defense Technology,; Changsha 410073, China; 2. Complex Aviation System Simulation Laboratory, Beijing 100076, China
Abstract:Q-learning algorithm can study without prior knowledge, and it is good at solving complicated optimal decision problems in many fields. by analyzing the popular algorithms for air combat target assignment, a Q-learning algorithm is proposed for solving it in agent-based modeling and simulation (ABMS). Firstly, modeling of this problem is introduced in the attributions, structure and action rules. Then, the flowchart of the Q-learning algorithm is given out. Furthermore, the criteria of state-action-pair are well defined. Finally, the simulation results show that the method is reasonable and valid. The method can avoid relying on the prior knowledge and get out of the local optimal solution.
Keywords:
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号