首页 | 本学科首页   官方微博 | 高级检索  
     


Hierarchical Shrinkage in Time‐Varying Parameter Models
Authors:Miguel A.G. Belmonte  Gary Koop  Dimitris Korobilis
Affiliation:1. University of Strathclyde, Glasgow, UK;2. Adam Smith Business School, University of Glasgow, UK
Abstract:In this paper, we forecast EU area inflation with many predictors using time‐varying parameter models. The facts that time‐varying parameter models are parameter rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the Bayesian Lasso is gaining increasing popularity as an effective tool for achieving such shrinkage. In this paper, we develop econometric methods for using the Bayesian Lasso with time‐varying parameter models. Our approach allows for the coefficient on each predictor to be: (i) time varying; (ii) constant over time; or (iii) shrunk to zero. The econometric methodology decides automatically to which category each coefficient belongs. Our empirical results indicate the benefits of such an approach. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:forecasting  hierarchical prior  time‐varying parameters  Bayesian Lasso
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号